Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.415
Filtrar
1.
BMC Plant Biol ; 24(1): 236, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38561660

RESUMO

BACKGROUND: Acyl-CoA-Binding proteins (ACBPs) function as coenzyme A transporters and play important roles in regulating plant growth and development in response to abiotic stress and phytohormones, as well as in membrane repair. To date, the ACBP family has not been a comprehensively characterized in barley (Hordeum vulgare L.). RESULTS: Eight ACBP genes were identified in the barley genome and named as HvACBP1-8. The analysis of the proteins structure and promoter elements of HvACBP suggested its potential functions in plant growth, development, and stress response. These HvACBPs are expressed in specific tissues and organs following induction by abiotic stressors such as drought, salinity, UV-B exposure, temperature extremes, and exposure to exogenous phytohormones. The HvACBP7 and HvACBP8 amino acid sequences were conserved during the domestication of Tibetan Qingke barley. CONCLUSIONS: Acyl-CoA-binding proteins may play important roles in barley growth and environmental adaptation. This study provides foundation for further analyses of the biological functions of HvACBPs in the barley stress response.


Assuntos
Hordeum , Hordeum/genética , Hordeum/metabolismo , Inibidor da Ligação a Diazepam/metabolismo , Reguladores de Crescimento de Plantas , Hormônios , Estresse Fisiológico/genética
2.
Plant Mol Biol ; 114(3): 50, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656412

RESUMO

Amylose biosynthesis is strictly associated with granule-bound starch synthase I (GBSSI) encoded by the Waxy gene. Mutagenesis of single bases in the Waxy gene, which induced by CRISPR/Cas9 genome editing, caused absence of intact GBSSI protein in grain of the edited line. The amylose and amylopectin contents of waxy mutants were zero and 31.73%, while those in the wild type were 33.50% and 39.00%, respectively. The absence of GBSSI protein led to increase in soluble sugar content to 37.30% compared with only 10.0% in the wild type. Sucrose and ß-glucan, were 39.16% and 35.40% higher in waxy mutants than in the wild type, respectively. Transcriptome analysis identified differences between the wild type and waxy mutants that could partly explain the reduction in amylose and amylopectin contents and the increase in soluble sugar, sucrose and ß-glucan contents. This waxy flour, which showed lower final viscosity and setback, and higher breakdown, could provide more option for food processing.


Assuntos
Amilose , Edição de Genes , Hordeum , Proteínas de Plantas , Sintase do Amido , Amilose/metabolismo , Hordeum/genética , Hordeum/metabolismo , Edição de Genes/métodos , Sintase do Amido/genética , Sintase do Amido/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sistemas CRISPR-Cas , Amilopectina/metabolismo , Sacarose/metabolismo , Açúcares/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação , beta-Glucanas/metabolismo , Plantas Geneticamente Modificadas , Solubilidade
3.
PLoS One ; 19(3): e0299400, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502680

RESUMO

Abiotic stresses occur more often in combination than alone under regular field conditions limiting in more severe way crop production. Stress recognition in plants primarily occurs in the plasma membrane, modification of which is necessary to maintain homeostasis in response to it. It is known that lipid transport proteins (ns-LTPs) participate in modification of the lipidome of cell membranes. Representative of this group, ns-LTP2.8, may be involved in the reaction to abiotic stress of germinating barley plants by mediating the intracellular transport of hydrophobic particles, such as lipids, helping to maintain homeostasis. The ns-LTP2.8 protein was selected for analysis due to its ability to transport not only linear hydrophobic molecules but also compounds with a more complex spatial structure. Moreover, ns-LTP2.8 has been qualified as a member of pathogenesis-related proteins, which makes it particularly important in relation to its high allergenic potential. This paper demonstrates for the first time the influence of various abiotic stresses acting separately as well as in their combinations on the change in the ns-LTP2.8 transcript, ns-LTP2.8 protein and total soluble protein content in the embryonal axes of germinating spring barley genotypes with different ns-LTP2.8 allelic forms and stress tolerance. Tissue localization of ns-LTP2.8 transcript as well as ns-LTP2.8 protein were also examined. Although the impact of abiotic stresses on the regulation of gene transcription and translation processes remains not fully recognized, in this work we managed to demonstrate different impact on applied stresses on the fundamental cellular processes in very little studied tissue of the embryonal axis of barley.


Assuntos
Hordeum , Hordeum/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Genótipo , Estresse Fisiológico/genética
4.
Food Chem ; 446: 138898, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38447386

RESUMO

Dimers of hydroxycinnamoylagmatines are phenolic compounds found in barley and beer. Although they are bioactive and sensory-active compounds, systematic reports on their structure-property relationships are missing. This is partly due to lack of protocols to obtain a diverse set of hydroxycinnamoylagmatine homo- and heterodimers. To better understand dimer formation in complex systems, combinations of the monomers coumaroylagmatine (CouAgm), feruloylagmatine (FerAgm), and sinapoylagmatine (SinAgm) were incubated with horseradish peroxidase. For all combinations, the main oxidative coupling products were homodimers. Additionally, minor amounts of heterodimers were formed, except for the combination of FerAgm and CouAgm. Oxidative coupling was also performed with laccases from Agaricus bisporus and Trametes versicolor, resulting in formation of the same coupling products and no formation of CouAgm-FerAgm heterodimers. Our protocol for oxidative coupling combinations of hydroxycinnamoylagmatines yielded a structurally diverse set of coupling products, facilitating production of dimers for future research on their structure-property relationships.


Assuntos
Hordeum , Hordeum/metabolismo , Trametes/metabolismo , Oxirredução , Fenóis , Estresse Oxidativo , Lacase/metabolismo
5.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38502875

RESUMO

The world population is growing exponentially, increasing demand to produce high-quality protein for human consumption. Changes in weather patterns, drought, and decreased land resources due to urbanization have increased the strain on the agriculture sector to meet world demands. An alternative method to combat these issues and continue to produce high-quality livestock feed would be through a controlled environment vertical farming system. Commonly, cereal grains, such as barley, are used in these systems to produce livestock feed. However, there is little information on the viability of feeding sprouted grains to beef cattle. Two diets of either feeder-quality alfalfa hay (n = 10 pairs; ALF) or the same alfalfa hay and sprouted barley (SB; 12.6% dry matter [DM]; n = 10 pairs) were fed for 90 d to Angus pairs with a steer calf during mid to late lactation. On days 0 and 90, body weight (BW), milk, rumen fluid, and body condition score were collected from cows and hip height and BW were recorded for calves. On day 10, BW was recorded for cows and calves and rumen fluid was collected from cows. Rumen fluid was also collected from cows on day 45. On day 55, BW was collected for both cows and calves and milk from cows. Intake was recorded throughout the trial via bunks with Vytelle technology. The PROC MIXED procedure of SAS was used to analyze all data with the day as a repeated measure to determine the main effect of diet. Individual volatile fatty acids (VFA) were measured as a percent of total VFA. No differences (P ≥ 0.16) were observed in calf BW, hip height, milk protein, fat, lactose, calf DM intake (DMI), or cow DMI. Cows fed SB tended (P = 0.08) to have a decreased somatic cell count compared to ALF. Percent butyrate was impacted by diet × day (P = 0.02), but no difference (P > 0.09) at any time points were detected. Additionally, a diet × day effect (P = 0.001) on rumen pH demonstrated that both groups stayed consistent until day 45 and then SB pH decreased the last 45 d. There was a day effect for total VFA (P = 0.0009), acetate:propionate (Ac:Pr; P < 0.0001), acetate (P < 0.0001), and propionate (P < 0.0001) demonstrating that total VFA, acetate, and Ac:Pr all increased throughout the trial, while propionate decreased. These results indicate that SB can be a potential alternative feed at this stage of production as it does not negatively impact health or production, but does affect the rumen pH and proportion of some VFA.


Climate variability and uncertainty associated with weather patterns can greatly impact feed security for cattle producers. Flooding, drought, and temperature extremes can reduce a farmer's ability to produce a consistent crop, resulting in feed prices that can fluctuate greatly. Vertical farming systems that sprout cereal grains in a controlled environment, using precision irrigation, may alleviate the effects of external factors such as climate and resulting feed prices. The objective of this study was to determine if sprouted barley (SB) could be used as an effective alternative feed source for cow-calf pairs. Two diets were fed to 20 cow-calf pairs, a control diet consisting of 100% feeder-quality alfalfa hay, or an experimental diet comprised of feeder-quality alfalfa hay and a 12.6% dry matter inclusion of SB for 90 d. Body weight, feed intake, and feeding behavior were analyzed in the cows and calves. Ruminal health was also assessed in cows by analyzing the ruminal fluid for pH and volatile fatty acid composition. When health and performance metrics were analyzed, no differences were found between the two diets that were administered to the cattle.


Assuntos
Hordeum , Feminino , Humanos , Bovinos , Animais , Hordeum/metabolismo , Medicago sativa/metabolismo , Propionatos/metabolismo , Ração Animal/análise , Rúmen/metabolismo , Dieta/veterinária , Lactação , Ácidos Graxos Voláteis/metabolismo , Acetatos/metabolismo , Fermentação
6.
Plant Cell Rep ; 43(4): 96, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480545

RESUMO

KEY MESSAGE: Barley AGO4 proteins complement expressional changes of epigenetically regulated genes in Arabidopsis ago4-3 mutant and show a distinct affinity for the 5' terminal nucleotide of small RNAs, demonstrating functional conservation and divergence. The function of Argonaute 4 (AGO4) in Arabidopsis thaliana has been extensively characterized; however, its role in monocots, which have large genomes abundantly supplemented with transposable elements (TEs), remains elusive. The study of barley AGO4 proteins can provide insights into the conserved aspects of RNA-directed DNA methylation (RdDM) and could also have further applications in the field of epigenetics or crop improvement. Bioinformatic analysis of RNA sequencing data identified two active AGO4 genes in barley, HvAGO4a and HvAGO4b. These genes function similar to AtAGO4 in an Arabidopsis heterologous complementation system, primarily binding to 24-nucleotide long small RNAs (sRNAs) and triggering methylation at specific target loci. Like AtAGO4, HvAGO4B exhibits a preference for binding sRNAs with 5' adenine residue, while also accepting 5' guanine, uracil, and cytosine residues. In contrast, HvAGO4A selectively binds only sRNAs with a 5' adenine residue. The diverse binding capacity of barley AGO4 proteins is reflected in TE-derived sRNAs and in their varying abundance. Both barley AGO4 proteins effectively restore the levels of extrachromosomal DNA and transcript abundancy of the heat-activated ONSEN retrotransposon to those observed in wild-type Arabidopsis plants. Our study provides insight into the distinct binding specificities and involvement in TE regulation of barley AGO4 proteins in Arabidopsis by heterologous complementation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Hordeum , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hordeum/genética , Hordeum/metabolismo , RNA Interferente Pequeno/genética , Nucleotídeos/metabolismo , Adenina/metabolismo , Metilação de DNA/genética , RNA de Plantas/genética
7.
Ultrason Sonochem ; 105: 106860, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38554531

RESUMO

Harder kernels of barley are regarded as one of the factors that restrict water and enzyme movement within the endosperm during malting. A comprehensive study of two domestic varieties was performed for evaluating malting quality. Both ß-glucan and total protein content of the Chinese domestic barley (Ganpi-6 and Kenpi-14) were significantly higher than Copeland. Grain hardness of the Chinese domestic barley was higher and water uptake ratio was lower compared with the Copeland. During germination, the expression levels of NCED1, NCED2 (major key regulatory enzymes for abscisic acid biosynthesis genes) were higher, whereas gibberelic acid (GA) synthesis genes (GA20ox1, GA2ox3, GA3ox2) were lower in the Ganpi-6, Kenpi-14 compared with Copeland. These two domestic barley varieties also showed significantly lower limit dextrinase and ß-glucanase activity compared with Copeland. Ultrasound treatment improved the malting quality of Ganpi-6 by enhancing water uptake and GA synthesis gene expression increased. Therefore, these findings provided insights into the future direction on the utilization of ultrasonication for the applications towards the improvement of the harder barley variety.


Assuntos
Hordeum , Hordeum/genética , Hordeum/metabolismo , Água/química , Regulação da Expressão Gênica de Plantas , Germinação , Ondas Ultrassônicas , Giberelinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
Science ; 383(6690): 1448-1454, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38547266

RESUMO

The defensive alkaloid gramine not only protects barley and other grasses from insects but also negatively affects their palatability to ruminants. The key gene for gramine formation has remained elusive, hampering breeding initiatives. In this work, we report that a gene encoding cytochrome P450 monooxygenase CYP76M57, which we name AMI synthase (AMIS), enables the production of gramine in Nicotiana benthamiana, Arabidopsis thaliana, and Saccharomyces cerevisiae. We reconstituted gramine production in the gramine-free barley (Hordeum vulgare) variety Golden Promise and eliminated it from cultivar Tafeno by Cas-mediated gene editing. In vitro experiments unraveled that an unexpected cryptic oxidative rearrangement underlies this noncanonical conversion of an amino acid to a chain-shortened biogenic amine. The discovery of the genetic basis of gramine formation now permits tailor-made optimization of gramine-linked traits in barley by plant breeding.


Assuntos
Sistema Enzimático do Citocromo P-450 , Hordeum , Alcaloides Indólicos , Família Multigênica , Hordeum/genética , Hordeum/metabolismo , Alcaloides Indólicos/metabolismo , Melhoramento Vegetal , Oxirredução , Triptofano/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Edição de Genes , Genes de Plantas
9.
Photosynth Res ; 159(1): 69-78, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38329704

RESUMO

The combined stress of drought and salinity is prevalent in various regions of the world, affects several physiological and biochemical processes in crops, and causes their yield to decrease. Photosynthesis is one of the main processes that are disturbed by combined stress. Therefore, improving the photosynthetic efficiency of crops is one of the most promising strategies to overcome environmental stresses, making studying the molecular basis of regulation of photosynthesis a necessity. In this study, we sought a potential mechanism that regulated a major component of the combined stress response in the important crop barley (Hordeum vulgare L.), namely the Rubisco activase A (RcaA) gene. Promoter analysis of the RcaA gene led to identifying Jasmonic acid (JA)-responsive elements with a high occurrence. Specifically, a Myelocytomatosis oncogenes 2 (MYC2) transcription factor binding site was highlighted as a plausible functional promoter motif. We conducted a controlled greenhouse experiment with an abiotic stress-susceptible barley genotype and evaluated expression profiling of the RcaA and MYC2 genes, photosynthetic parameters, plant water status, and cell membrane damages under JA, combined drought and salinity stress (CS) and JA + CS treatments. Our results showed that applying JA enhances barley's photosynthetic efficiency and water relations and considerably compensates for the adverse effects of combined stress. Significant association was observed among gene expression profiles and evaluated physiochemical characteristics. The results showed a plausible regulatory route through the JA-dependent MYC2-RcaA module involved in photosynthesis regulation and combined stress tolerance. These findings provide valuable knowledge for further functional studies of the regulation of photosynthesis under abiotic stresses toward the development of multiple-stress-tolerant crops.


Assuntos
Ciclopentanos , Hordeum , Oxilipinas , Hordeum/genética , Hordeum/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Ativador de Plasminogênio Tecidual/metabolismo , Ativador de Plasminogênio Tecidual/farmacologia , Secas , Fotossíntese/genética , Estresse Salino , Estresse Fisiológico , Água/metabolismo , Salinidade
10.
Environ Sci Pollut Res Int ; 31(16): 23591-23609, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38418792

RESUMO

Arsenic (As)-induced environmental pollution and associated health risks are recognized on a global level. Here the impact of cotton shells derived biochar (BC) and silicon-nanoparticles loaded biochar (nano-Si-BC) was explored on soil As immobilization and its phytotoxicity in barley plants in a greenhouse study. The barley plants were grown in a sandy loam soil with varying concentrations of BC and nano-Si-BC (0, 1, and 2%), along with different levels of As (0, 5, 10, and 20 mg kg-1). The FTIR spectroscopy, SEM-EDX, and XRD were used to characterize BC and nano-Si-BC. Results revealed that As treatment had a negative impact on barley plant development, grain yield, physiology, and anti-oxidative response. However, the addition of nano-Si-BC led to a 71% reduction in shoot As concentration compared to the control with 20 mg kg-1 of As, while BC alone resulted in a 51% decline. Furthermore, the 2% nano-Si-BC increased grain yield by 94% compared to control and 28% compared to BC. The addition of 2% nano-Si-BC to As-contaminated soil reduced oxidative stress (34% H2O2 and 48% MDA content) and enhanced plant As tolerance (92% peroxidase and 46% Ascorbate peroxidase activity). The chlorophyll concentration in barley plants decreased due to oxidative stress. Additionally, the incorporation of 2% nano-Si-BC resulted in a 76% reduction in water soluble and NaHCO3 extractable As. It is concluded that the use of BC or nano-Si-BC in As contaminated soil for barley resulted in a low human health risk (HQ < 1), as it effectively immobilized As and promoted higher activity of antioxidants.


Assuntos
Arsênio , Hordeum , Nanopartículas , Poluentes do Solo , Humanos , Silício/análise , Arsênio/análise , Hordeum/metabolismo , Solo/química , Peróxido de Hidrogênio/análise , Antioxidantes/metabolismo , Carvão Vegetal/química , Grão Comestível/química , Poluentes do Solo/análise
11.
Environ Sci Pollut Res Int ; 31(14): 22171-22186, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38403831

RESUMO

Root-to-shoot translocation of nanoparticles (NPs) is a matter of interest due to their possible unprecedented effects on biota. Properties of NPs, such as structure, surface charge or coating, and size, determine their uptake by cells. This study investigates the size effect of iron oxide (Fe3O4) NPs on plant uptake, translocation, and physiology. For this purpose, Fe3O4 NPs having about 10 and 100 nm in average sizes (namely NP10 and NP100) were hydroponically subjected to barley (Hordeum vulgare L.) in different doses (50, 100, and 200 mg/L) at germination (5 days) and seedling (3 weeks) stages. Results revealed that particle size does not significantly influence the seedlings' growth but improves germination. The iron content in root and leaf tissues gradually increased with increasing NP10 and NP100 concentrations, revealing their root-to-shoot translocation. This result was confirmed by vibrating sample magnetometry analysis, where the magnetic signals increased with increasing NP doses. The translocation of NPs enhanced chlorophyll and carotenoid contents, suggesting their contribution to plant pigmentation. On the other hand, catalase activity and H2O2 production were higher in NP10-treated roots compared to NP100-treated ones. Besides, confocal microscopy revealed that NP10 leads to cell membrane damages. These findings showed that Fe3O4 NPs were efficiently taken up by the roots and transported to the leaves regardless of the size factor. However, small-sized Fe3O4 NPs may be more reactive due to their size properties and may cause cell stress and membrane damage. This study may help us better understand the size effect of NPs in nanoparticle-plant interaction.


Assuntos
Hordeum , Hordeum/metabolismo , Tamanho da Partícula , Bioacumulação , Peróxido de Hidrogênio/metabolismo , Plântula , Nanopartículas Magnéticas de Óxido de Ferro
12.
Physiol Plant ; 176(1): e14192, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38351880

RESUMO

In plants, the contribution of the plasmotype (mitochondria and chloroplast) in controlling the circadian clock plasticity and possible consequences on cytonuclear genetic makeup have yet to be fully elucidated. A genome-wide association study in the wild barley (Hordeum vulgare ssp. spontaneum) B1K collection identified overlap with our previously mapped DRIVERS OF CLOCKS (DOCs) loci in wild-cultivated interspecific population. Moreover, we identified non-random segregation and epistatic interactions between nuclear DOCs loci and the chloroplastic RpoC1 gene, indicating an adaptive value for specific cytonuclear gene combinations. Furthermore, we show that DOC1.1, which harbours the candidate SIGMA FACTOR-B (SIG-B) gene, is linked with the differential expression of SIG-B and CCA1 genes and contributes to the circadian gating response to heat. High-resolution temporal growth and photosynthesis measurements of B1K also link the DOCs loci to differential growth, Chl content and quantum yield. To validate the involvement of the Plastid encoded polymerase (PEP) complex, we over-expressed the two barley chloroplastic RpoC1 alleles in Arabidopsis and identified significant differential plasticity under elevated temperatures. Finally, enhanced clock plasticity of de novo ENU (N-Ethyl-N-nitrosourea) -induced barley rpoB1 mutant further implicates the PEP complex as a key player in regulating the circadian clock output. Overall, this study highlights the contribution of specific cytonuclear interaction between rpoC1 (PEP gene) and SIG-B with distinct circadian timing regulation under heat, and their pleiotropic effects on growth implicate an adaptive value.


Assuntos
Relógios Circadianos , Hordeum , Hordeum/metabolismo , Estudo de Associação Genômica Ampla , Relógios Circadianos/genética , Fotossíntese/genética
13.
J Exp Bot ; 75(8): 2299-2312, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38301663

RESUMO

Barley is a staple crop of major global importance and relatively resilient to a wide range of stress factors in the field. Transgenic reporter lines to investigate physiological parameters during stress treatments remain scarce. We generated and characterized transgenic homozygous barley lines (cv. Golden Promise Fast) expressing the genetically encoded biosensor Grx1-roGFP2, which indicates the redox potential of the major antioxidant glutathione in the cytosol. Our results demonstrated functionality of the sensor in living barley plants. We determined the glutathione redox potential (EGSH) of the cytosol to be in the range of -308 mV to -320 mV. EGSH was robust against a combined NaCl (150 mM) and water deficit treatment (-0.8 MPa) but responded with oxidation to infiltration with the phytotoxic secretome of the necrotrophic fungus Botrytis cinerea. The generated reporter lines are a novel resource to study biotic and abiotic stress resilience in barley, pinpointing that even severe abiotic stress leading to a growth delay does not automatically induce cytosolic EGSH oxidation, while necrotrophic pathogens can undermine this robustness.


Assuntos
Técnicas Biossensoriais , Hordeum , Citosol/metabolismo , Hordeum/genética , Hordeum/metabolismo , Estresse Fisiológico , Oxirredução , Glutationa/metabolismo , Técnicas Biossensoriais/métodos
14.
Appl Microbiol Biotechnol ; 108(1): 189, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38305872

RESUMO

Bacterial strains of the genera Arthrobacter, Bacillus, Dietzia, Kocuria, and Micrococcus were isolated from oil-contaminated soils of the Balgimbaev, Dossor, and Zaburunye oil fields in Kazakhstan. They were selected from 1376 isolated strains based on their unique ability to use crude oil and polyaromatic hydrocarbons (PAHs) as sole source of carbon and energy in growth experiments. The isolated strains degraded a wide range of aliphatic and aromatic components from crude oil to generate a total of 170 acid metabolites. Eight metabolites were detected during the degradation of anthracene and of phenanthrene, two of which led to the description of a new degradation pathway. The selected bacterial strains Arthrobacter bussei/agilis SBUG 2290, Bacillus atrophaeus SBUG 2291, Bacillus subtilis SBUG 2285, Dietzia kunjamensis SBUG 2289, Kocuria rosea SBUG 2287, Kocuria polaris SBUG 2288, and Micrococcus luteus SBUG 2286 promoted the growth of barley shoots and roots in oil-contaminated soil, demonstrating the enormous potential of isolatable and cultivable soil bacteria in soil remediation. KEY POINTS: • Special powerful bacterial strains as potential crude oil and PAH degraders. • Growth on crude oil or PAHs as sole source of carbon and energy. • Bacterial support of barley growth as resource for soil remediation.


Assuntos
Hordeum , Hidrocarbonetos Aromáticos , Petróleo , Poluentes do Solo , Petróleo/microbiologia , Campos de Petróleo e Gás , Hordeum/metabolismo , Poluentes do Solo/metabolismo , Hidrocarbonetos Aromáticos/metabolismo , Bacillus subtilis/metabolismo , Carbono/metabolismo , Solo , Biodegradação Ambiental , Microbiologia do Solo , Hidrocarbonetos/metabolismo
15.
Sci Rep ; 14(1): 3119, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326519

RESUMO

DNA damage response (DDR) is an essential mechanism by which living organisms maintain their genomic stability. In plants, DDR is important also for normal growth and yield. Here, we explored the DDR of a temperate model crop barley (Hordeum vulgare) at the phenotypic, physiological, and transcriptomic levels. By a series of in vitro DNA damage assays using the DNA strand break (DNA-SB) inducing agent zeocin, we showed reduced root growth and expansion of the differentiated zone to the root tip. Genome-wide transcriptional profiling of barley wild-type and plants mutated in DDR signaling kinase ATAXIA TELANGIECTASIA MUTATED AND RAD3-RELATED (hvatr.g) revealed zeocin-dependent, ATR-dependent, and zeocin-dependent/ATR-independent transcriptional responses. Transcriptional changes were scored also using the newly developed catalog of 421 barley DDR genes with the phylogenetically-resolved relationships of barley SUPRESSOR OF GAMMA 1 (SOG1) and SOG1-LIKE (SGL) genes. Zeocin caused up-regulation of specific DDR factors and down-regulation of cell cycle and histone genes, mostly in an ATR-independent manner. The ATR dependency was obvious for some factors associated with DDR during DNA replication and for many genes without an obvious connection to DDR. This provided molecular insight into the response to DNA-SB induction in the large and complex barley genome.


Assuntos
Bleomicina , Hordeum , Hordeum/genética , Hordeum/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Dano ao DNA , Reparo do DNA , DNA
16.
Funct Plant Biol ; 512024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38252957

RESUMO

Barley (Hordeum vulgare ) is the world's fourth most important cereal crop, and is particularly well adapted to harsh environments. However, lodging is a major productivity constraint causing 13-65% yield losses. Gibberellic acid (GA) homeostatic genes such as HvGA20ox, HvGA3ox and HvGA2ox are responsible for changes in plant phenotype for height and internodal length that contribute towards lodging resistance. This study explored the expression of different HvGAox transcripts in two contrasting barley genotypes (5-GSBON-18, lodging resistant; and 5-GSBON-70, lodging sensitive), which were sown both under controlled (hydroponic, completely randomised factorial design) and field conditions (split-plot, completely randomised block design) with two irrigation treatments (normal with three irrigation events; and water deficit with one irrigation event). In the hydroponic experiment, expression analysis was performed on seedlings at 0, ¾, 1½, 3 and 6h after application of treatment. In the field experiment, leaf, shoot nodes and internodes were sampled. Downregulation of HvGA20ox.1 transcript and 2-fold upregulation of HvGA2ox.2 transcript were observed in 5-GSBON-18 under water deficit conditions. This genotype also showed a significant reduction in plant height (18-20%), lodging (<10%), and increased grain yield (15-18%) under stress. Utilisation of these transcripts in barley breeding has the potential to reduce plant height, lodging and increased grain yield.


Assuntos
Hordeum , Hordeum/genética , Hordeum/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Água/metabolismo , Giberelinas/farmacologia , Giberelinas/metabolismo , Melhoramento Vegetal , Genótipo , Grão Comestível/genética , Grão Comestível/metabolismo
17.
BMC Genomics ; 25(1): 79, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243200

RESUMO

BACKGROUND: Drought poses a major threat to agricultural production and thus food security. Understanding the processes shaping plant responses to water deficit is essential for global food safety. Though many studies examined the effect of water deficit on the whole-root level, the distinct functions of each root zone and their specific stress responses remain masked by this approach. RESULTS: In this study, we investigated the effect of water deficit on root development of the spring barley (Hordeum vulgare L.) cultivar Morex and examined transcriptomic responses at the level of longitudinal root zones. Water deficit significantly reduced root growth rates after two days of treatment. RNA-sequencing revealed root zone and temporal gene expression changes depending on the duration of water deficit treatment. The majority of water deficit-regulated genes were unique for their respective root zone-by-treatment combination, though they were associated with commonly enriched gene ontology terms. Among these, we found terms associated with transport, detoxification, or cell wall formation affected by water deficit. Integration of weighted gene co-expression analyses identified differential hub genes, that highlighted the importance of modulating energy and protein metabolism and stress response. CONCLUSION: Our findings provide new insights into the highly dynamic and spatiotemporal response cascade triggered by water deficit and the underlying genetic regulations on the level of root zones in the barley cultivar Morex, providing potential targets to enhance plant resilience against environmental constraints. This study further emphasizes the importance of considering spatial and temporal resolution when examining stress responses.


Assuntos
Hordeum , Água , Água/metabolismo , Hordeum/metabolismo , Raízes de Plantas/metabolismo , Perfilação da Expressão Gênica , Transcriptoma , Secas
18.
BMC Genomics ; 25(1): 26, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172704

RESUMO

Databases of genome sequences are growing exponentially, but, in some cases, assembly is incomplete and genes are poorly annotated. For evolutionary studies, it is important to identify all members of a given gene family in a genome. We developed a method for identifying most, if not all, members of a gene family from raw genomes in which assembly is of low quality, using the P-type ATPase superfamily as an example. The method is based on the translation of an entire genome in all six reading frames and the co-occurrence of two family-specific sequence motifs that are in close proximity to each other. To test the method's usability, we first used it to identify P-type ATPase members in the high-quality annotated genome of barley (Hordeum vulgare). Subsequently, after successfully identifying plasma membrane H+-ATPase family members (P3A ATPases) in various plant genomes of varying quality, we tested the hypothesis that the number of P3A ATPases correlates with the ability of the plant to tolerate saline conditions. In 19 genomes of glycophytes and halophytes, the total number of P3A ATPase genes was found to vary from 7 to 22, but no significant difference was found between the two groups. The method successfully identified P-type ATPase family members in raw genomes that are poorly assembled.


Assuntos
Hordeum , ATPases do Tipo-P , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Genoma de Planta , ATPases do Tipo-P/genética , Hordeum/genética , Hordeum/metabolismo , Filogenia
19.
Plant Physiol Biochem ; 206: 108208, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38039584

RESUMO

Previous findings have shown that phospholipase D (PLD) contributes to the response to long-term chilling stress in barley by regulating the balance of proline (Pro) levels. Although Pro accumulation is one of the most prominent changes in barley roots exposed to this kind of stress, the regulation of its metabolism during recovery from stress remains unclear. Research has mostly focused on the responses to stress per se, and not much is known about the dynamics and mechanisms underlying the subsequent recovery. The present study aimed to evaluate how PLD, its product phosphatidic acid (PA), and diacylglycerol pyrophosphate (DGPP) modulate Pro accumulation in barley during recovery from long-term chilling stress. Pro metabolism involves different pathways and enzymes. The rate-limiting step is mediated by pyrroline-5-carboxylate synthetase (P5CS) in its biosynthesis, and by proline dehydrogenase (ProDH) in its catabolism. We observed that Pro levels decreased in recovering barley roots due to an increase in ProDH activity. The addition of 1-butanol, a PLD inhibitor, reverted this effect and altered the relative gene expression of ProDH. When barley tissues were treated with PA before recovery, the fresh weight of roots increased and ProDH activity was stimulated. These data contribute to our understanding of how acidic membrane phospholipids like PA help to control Pro degradation during recovery from stress.


Assuntos
Hordeum , Hordeum/metabolismo , Resposta ao Choque Frio , Transdução de Sinais , Prolina Oxidase/metabolismo , Ácidos Fosfatídicos/metabolismo , Prolina/metabolismo
20.
Plant Sci ; 339: 111919, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37992897

RESUMO

Efficient micronutrient acquisition is a critical factor in selecting micronutrient dense crops for human consumption. Enhanced exudation and re-uptake of metal chelators, so-called phytosiderophores, by roots of graminaceous plants has been implicated in efficient micronutrient acquisition. We compared PS biosynthesis and exudation as a response mechanism to either Fe, Zn or Cu starvation. Two barley (Hordeum vulgare L.) lines with contrasting micronutrient grain yields were grown hydroponically and PS exudation (LC-MS) and root gene expression (RNAseq) were determined after either Fe, Zn, or Cu starvation. The response strength of the PS pathway was micronutrient dependent and decreased in the order Fe > Zn > Cu deficiency. We observed a stronger expression of PS pathway genes and greater PS exudation in the barley line with large micronutrient grain yield suggesting that a highly expressed PS pathway might be an important trait involved in high micronutrient accumulation. In addition to several metal specific transporters, we also found that the expression of IRO2 and bHLH156 transcription factors was not only induced under Fe but also under Zn and Cu deficiency. Our study delivers important insights into the role of the PS pathway in the acquisition of different micronutrients.


Assuntos
Hordeum , Ferro , Humanos , Ferro/metabolismo , Zinco/metabolismo , Hordeum/genética , Hordeum/metabolismo , Cobre/metabolismo , Micronutrientes/metabolismo , Raízes de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...